Senzing API Docker Quickstart Guide

Use Senzing with the example Docker images quickly. With the new example Docker images built on the senzingapi-runtime Linux package (available since Senzing 3.2), running and building your own Docker images is very simple.

Depending on the speed of your internet connection, this may only take you a few minutes. Here is a quick (informal) video

Info

Senzing provides 100k source records for ingestion and evaluation for free. If you require additional records for an evaluation, or any assistance when following this guide, please contact support for free help!

Prerequisites

  • A Docker environment for running Intel x86_64 containers
  • To run the docker commands without sudo your user should be a member of the docker group
    • If your userid is not a member of the docker group and you use sudo to run the docker command, you will need to add --preserve-env after sudo
    sudo --preserve-env docker run ...
    
  • Access to dockerhub.com to pull images
  • Senzing supports air-gapped deployments but this quickstart won’t cover pulling the images for offline use. Those running air-gapped deployments should be familiar with that already
  • A PostgreSQL database set up and tuned, and the username, password, IP address, port, and database name needed to connect

Getting it Done!

Set up the Environment

The Senzing engine configuration used in the new Docker images is set via the SENZING_ENGINE_CONFIGURATION_JSON environment variable. This is further described here. To set the environment variable run the following in your environment, replacing the CONNECTION details with those of your database.

export SENZING_ENGINE_CONFIGURATION_JSON='{
 "PIPELINE" : {
 "CONFIGPATH" : "/etc/opt/senzing",
 "RESOURCEPATH" : "/opt/senzing/g2/resources",
 "SUPPORTPATH" : "/opt/senzing/data"
 },
 "SQL" : { "CONNECTION" : "postgresql://username:password@10.10.10.10:5432:G2" }
}'
Tip

If you have PostgreSQL installed on localhost (127.0.0.1), you need to use the docker network or external IP of your host and NOT 127.0.0.1. From the perspective of the docker container, 127.0.0.1 is itself.

Initialize

It takes about 30 seconds to initialize the Senzing database using Docker. Once SENZING_ENGINE_CONFIGURATION_JSON is set, the setup is a single Docker command.

docker run --rm -it -e SENZING_ENGINE_CONFIGURATION_JSON senzing/init-postgresql mandatory
Info

Senzing doesn’t require schema or configuration changes within the same major product version (e.g, any 3.x version), you don’t need to repeat this step again. “Upgrading” is merely running the new version of any container using this Senzing database.

DONE! Yes, REALLY!

At this point, the Senzing database is initialized. You can run any of the Senzing Docker images as well as any senzingapi-runtime based custom Docker images you create yourself by following this pattern. Yes, REALLY.

To utilize G2Explorer.py, G2ConfigTool.py, or G2Command.py, run the senzingapi-tools Docker image and execute those commands from that environment:

docker run --rm -it -e SENZING_ENGINE_CONFIGURATION_JSON senzing/senzingapi-tools

Or the demonstrable opensource web application:

docker run -it --rm -p 8251:8251 -e SENZING_ENGINE_CONFIGURATION_JSON senzing/web-app-demo

Start developing

Members of our team have made some GitHub projects that show more of what you can do quickly:

Other stuff you can do

Loading the Truth Set Data

To get started with some data, load the Senzing example truth set by:

  1. Downloading the truth set files in Senzing JSON format
  2. Add the data sources that the files use to the Senzing configuration
  3. Use senzing/file-loader to load them via Docker

Download the files

wget https://raw.githubusercontent.com/Senzing/truth-sets/main/truthsets/demo/customers.json
wget https://raw.githubusercontent.com/Senzing/truth-sets/main/truthsets/demo/reference.json
wget https://raw.githubusercontent.com/Senzing/truth-sets/main/truthsets/demo/watchlist.json

Add the data source

$ docker run --rm -it -e SENZING_ENGINE_CONFIGURATION_JSON senzing/senzingapi-tools
# G2ConfigTool.py

Initializing Senzing engines...

Welcome to G2Config Tool. Type help or ? to list commands.

(g2cfg) addDataSource CUSTOMERS

Successfully added!

(g2cfg) addDataSource REFERENCE

Successfully added!

(g2cfg) addDataSource WATCHLIST

Successfully added!

(g2cfg) save

WARNING: This will immediately update the current configuration in the Senzing repository with the current configuration!

Are you certain you wish to proceed and save changes? (y/n) y

Configuration saved to Senzing repository.


Initializing Senzing engines...

(g2cfg) quit
# exit
exit

Load the Files

Keep in mind that the file path is from the perspective of the Docker container and this example script requires the location of the files ${PWD} in this case) to be mapped into //data inside the container.

docker run -it --rm -u $UID -v ${PWD}:/data -e SENZING_ENGINE_CONFIGURATION_JSON senzing/file-loader -f /data/customers.json
docker run -it --rm -u $UID -v ${PWD}:/data -e SENZING_ENGINE_CONFIGURATION_JSON senzing/file-loader -f /data/reference.json
docker run -it --rm -u $UID -v ${PWD}:/data -e SENZING_ENGINE_CONFIGURATION_JSON senzing/file-loader -f /data/watchlist.json

Explore the results

$ docker run --rm -it -e SENZING_ENGINE_CONFIGURATION_JSON senzing/senzingapi-tools
# G2Explorer.py 

  ____|  __ \     \    
  __|    |   |   _ \   Senzing G2
  |      |   |  ___ \  Exploratory Data Analysis
 _____| ____/ _/    _\ 

Type help or ? to list commands.

(g2) get CUSTOMERS 1070

Entity summary for entity 556800056: Jie Wang
┌───────────┬───────────────────────────────┬─────────────────┐
│ Record ID │ Entity Data                   │ Additional Data │
├───────────┼───────────────────────────────┼─────────────────┤
│ CUSTOMERS │ PRIMARY: Wang Jie             │ AMOUNT: 100     │
│ 1069      │ NATIVE: 王杰                  │ AMOUNT: 200     │
│ 1070      │ DOB: 9/14/93                  │ DATE: 1/26/18   │
│           │ GENDER: M                     │ DATE: 1/27/18   │
│           │ GENDER: Male                  │ STATUS: Active  │
│           │ RECORD_TYPE: PERSON           │                 │
│           │ NATIONAL_ID: 832721           │                 │
│           │ NATIONAL_ID: 832721 Hong Kong │                 │
│           │ HOME: 12 Constitution Street  │                 │
├───────────┼───────────────────────────────┼─────────────────┤
│ REFERENCE │ PRIMARY: Wang Jie             │ CATEGORY: Owner │
│ 2013      │ DOB: 1993-09-14               │ STATUS: Current │
│           │ RECORD_TYPE: PERSON           │                 │
└───────────┴───────────────────────────────┴─────────────────┘

1 related entities
┌───────────┬──────────────────────────┬───────────────┬────────────────────┬────────────────────────┐
│ Entity ID │ Entity Name              │ Data Sources  │ Match Level        │ Match Key              │
├───────────┼──────────────────────────┼───────────────┼────────────────────┼────────────────────────┤
│ 91        │ Hajah Mamunah Jln Pisang │ CUSTOMERS (1) │ Disclosed Relation │ REL_POINTER(OWNS 60%:) │
│           │                          │ REFERENCE (1) │                    │                        │
└───────────┴──────────────────────────┴───────────────┴────────────────────┴────────────────────────┘

Mapping Your Own Data

At this point you are ready to map and load your own data. Mapping is the process of converting your source data into a structure Senzing understands ready to load.

Info

To learn more about mapping, the dictionary of terms and samples to help prepare your own data sources for loading and entity resolving review the Senzing Generic Entity Specification.

Consider these examples, in your data an attribute describing a personal full name is in a database table with the column name fullname. In Senzing a full name is represented by the term NAME_FULL. Similarly for address line 1, your database column is named addressline1, in Senzing this is represented by the term ADDR_LINE1.

Your task in mapping is to determine which attributes in your data source(s) are appropriate for use in entity resolution, extract those attributes and construct the structure describing those attributes to send to Senzing. The following is an example of a Senzing mapped JSON structure for an entry from a data source.

{
"DATA_SOURCE": "CUSTOMERS",
"RECORD_ID": "1001",
"RECORD_TYPE": "PERSON",
"PRIMARY_NAME_LAST": "Smith",
"PRIMARY_NAME_FIRST": "Robert",
"DATE_OF_BIRTH": "12/11/1978",
"ADDR_TYPE": "MAILING",
"ADDR_LINE1": "123 Main Street, Las Vegas NV 89132",
"PHONE_TYPE": "HOME",
"PHONE_NUMBER": "702-919-1300",
"EMAIL_ADDRESS": "bsmith@work.com",
}